BeagleSNES v0.6 User
and Developer Guide

Andrew Henderson
www.pbeaglesnes.org

Copyright (©) 2014 Andrew Henderson (hendersa@icculus.org)
WWW.BEAGLESNES.ORG

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may ob-
tain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless
required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

1.1
1.2
1.3

2.1
2.2
23

3.1
3.2

3.3

3.3.1
3.3.2
3.3.3
3.34
3.3.5

34

3.4.1
3.4.2

4.1

Contents

Overview
Using This Manual
BeagleSNES License

Overview
Downloading
Installing

Overview
Choosing a Boot Configuration

Configuring BeagleSNES

Modifying games.Xml
Adding ROMs and IMAgES oo e
Configuring Gamepad Button Mappingo oo e
Configuring A Pause Combination o
Configuring GPIOs For Inputo

Using BeagleSNES

Game Selection Menu e
Pause Menu e

Overview

10
10

13
13

14
15
16
17
18
19

20
2]
2]

23

5.1
5.2
5.3
5.4

6.1
6.2
6.3
64
6.5

7.1
7.2

7.3

7.3.1
7.3.2
7.3.3

74

8.1
8.2
8.3
8.4
8.5

9.1

10.1

Building BeagleSNES
Overview

Bootloader

Kernel

BeagleSNES Application

BeagleSNES Kernel and Bootloader
Overview

Bootloader

BeagleBoard-xM Kernel

BeagleBone Black Kernel

Other Improvements to Boot Speed

BeagleSNES Subsystems
Overview

Audio Subsystem

Video Subsystem

Video DuringBoot
Game SelectionMenu
Emulator Execution

Input Subsystem

Making BeagleSNES Portable
Overview

Video

Audio

GPIO Input

Other Considerations

Acknowledgements
General Acknowledgements

Project Changelog
Changelog

25
25
26
27

29
30
31
32
33

35
36

36

37
38
38

39

41
42
42
44
45

47

49

Overview
Using This Manual
BeagleSNES License

% beagle

www.beaglesnes.org

1 — An Introduction to BeagleSNES

Overview

BeagleSNES is a complete software system that turns the ARM-based BeagleBoard-xM (BB-xM)
and BeagleBone Black (BBB) hardware platforms' into a dedicated device capable of executing
software that was originally developed for the Super Nintendo Entertainment System®)(SNES)
video game console?. It allows you to play SNES titles on your television or computer monitor
via the DVI digital video output of the BB-xM and the HDMI output of the BBB. The BBB also
supports using the LCD3 cape for video output.

Figure 1.1: The BeagleBoard-xM (left) and BeagleBone Black (right) hardware platforms.

BeagleSNES originally began as a course project for a graduate embedded systems design
class. While the scope of the project was to port the SNES9X emulator to the BB-xM and then
tune the board’s Linux kernel for performance, things got a little out of hand. The project kept

'Learn more about the BeagleBoard family of hardware platforms at www . beagleboard. org.

ZNintendo®and Super Nintendo Entertainment System®are registered trademarks of Nintendo Co. Ltd. and its
subsidiary companies.

6 An Introduction to BeagleSNES

growing in complexity and scope. Over the span of four months, it matured into the initial
release of the project that you see today. The bootloader, Linux kernel, file system, and emulator
of BeagleSNES have all been customized for functionality, stability, and performance. These
components were further customized when the project was ported to the BBB.

The source code for BeagleSNES, as well as the latest instructions for building, installing, and
using the software, are freely available from www.beaglesnes.org. Almost all of BeagleSNES
is licensed under the GNU Public License (version 3) as open source software (OSS), but the
emulator itself is licensed under a custom, non-commercial license. What does this mean? It
means that you are welcome to examine the code, modify it, learn from it, and even use it in
projects of your own. But, you may not sell the system if it contains the emulator.

The hardware of the SNES (CPU, GPU, memory, audio chipset, etc.) is quite different
from the hardware of the BB-xM and BBB. SNES software will never execute natively on
these platforms, so BeagleSNES must emulate the hardware of the SNES in software. The
inputs, outputs, and internal state of each piece of SNES hardware is represented as high-level
source code (C and C++ code, in the case of BeagleSNES). The 16-bit microprocessor of the
SNES (the WDC 65C816) runs at a clock speed of 3.58 MHz. This is much slower than the
32-bit ARM CPUs of the BB-xM (AM37x 800 MHz Cortex-A8) and BBB (AM335x 1 GHz
Cortex-A8), meaning that there are enough resources available to dynamically translate every
SNES program instruction, at the time that it would be executed on the SNES, into one or more
ARM instructions and then execute them. This just-in-time dynamic translation approach has
considerable overhead, but it is very effective in situations where the emulated system is much
slower than the system performing the emulation.

/ o

Figure 1.2: The Super Nintendo Entertainment System®)video game console.

Several SNES emulators currently exist, and BeagleSNES leverages this existing work (rather
than "reinventing the wheel"). The SNES9X emulator® was selected to serve as the emulator
base for the project for the following reasons:

e All source code for the emulator is available, and all optimizations and additions made
to it as part of BeagleSNES can be freely released as long as the terms of the SNES9X
license are followed.

e The source code for the emulator is cross-platform, meaning that its implementation is not
tied to a particular display library or CPU architecture.

3www.snes9x.com

1.2

1.3

1.2 Using This Manual 7

e [ts emulation compatibility is quite good, allowing it to run many different pieces of SNES

software accurately.

While many architecture-specific performance optimizations exist in SNES9X (such as
using x86-based assembly cores to accelerate the emulation), many of these improvements can’t
be used with the ARM-based BB-xM and BBB. This limits the overall emulation speed of
BeagleSNES, but the performance is generally acceptable.

Using This Manual

This guide was written to help you to install and configure BeagleSNES. It also contains technical
information that provides details of how the system works and describes how to build the various
components of the system from source. Hopefully, this information will not only allow you to
enjoy BeagleSNES for your own entertainment, but also allow you to use this work as a basis for
whatever BeagleBoard-based system you might want to create.

For any important aspects of the system that warrant additional attention, this manual uses
the following box to highlight them:

will alert you to any important or useful information that you should be aware

%@ Be sure to pay attention to these boxes as you read through the manual. They
of.

For any commands executed on the command line, this manual uses the following box:

username@host$ sudo ./execute_this_command

Each section of the guide contains information on a different aspect of BeagleSNES. Section
1 is the introduction that you are reading right now. Section 2 describes how to download and
install the pre-made file system image of BeagleSNES. For most end-users, this section will
be the most important one to review. Section 3 provides instructions on how to add ROMs to
the BeagleSNES system and configure the game selection GUI and gamepad button mapping.
Section 4 is a troubleshooting guide to help you work through some of the common issues
that people come across. Section 5 gives step-by-step instructions on how to build the various
pieces of the BeagleSNES system. Section 6 provides more details about the configuration of the
bootloader and Linux kernel used in BeagleSNES. Section 7 describes several details of the audio,
video, and input subsystems of BeagleSNES. This will be of interest to developers that wish
to review the technical details of how BeagleSNES interfaces with the BeagleBoard hardware.
Section 8 describes how BeagleSNES might be made into a portable system and discusses the
LCD3 video target and GPIO input. Section 9 acknowledges the people and projects that have
contributed to the software and hardware that BeagleSNES is made from. Finally, section 10
serves as a changelog of the project from release to release.

Enjoy using BeagleSNES! Hopefully, you will learn a few things about embedded system
design in the process, too!

BeagleSNES License

The bootloader, Linux kernel, and GNU utilities that make up the BeagleSNES system are all
licensed under the GPL. These components can be freely modified, shared, and even sold, as
long as the terms of the GPL are followed. Feel free to use them as a base for your own projects!

The license information for the BeagleSNES emulator application can be seen in figure 1.3.
This license is a slightly modified version of the SNES9X license, which directs you to the stock
SNES9X license for all of the details. It allows you to look at, learn from, and use BeagleSNES

8 An Introduction to BeagleSNES

for personal use, but not to exploit it for commercial gain. This is NOT GPL licensed software,
but it is freeware.

[e BN o) SRV, I O B S

BeagleSNES — Super Nintendo Entertainment System (TM) emulator for the
BeagleBoard—xM and BeagleBone Black platforms.

(c) Copyright 2013 Andrew Henderson (hendersa@icculus.org)

BeagleSNES is a GUI front—end that is integrated into to the Snes9x
emulator, along with some hacks that shut off unneeded functionality
and tune the performance for execution on the BeagleBoard—=xM and
BeagleBone Black platforms.

Please refer to the snes9x—license.txt file for more information on

the authors and license pertainting to the Snes9x codebase. Specific
ports contains the works of other authors. See headers in individual
files .

BeagleSNES homepage: http ://www.beaglesnes.org/
Snes9x homepage: http ://www.snes9x .com/

Permission to use, copy, modify and/or distribute BeagleSNES in both
binary and source form, for non—commercial purposes, is hereby granted
without fee, providing that this license information and copyright
notice appear with all copies and any derived work.

This software is provided ’as—is’, without any express or implied
warranty . In no event shall the authors be held liable for any damages
arising from the use of this software or it’s derivatives.

BeagleSNES is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for BeagleSNES or software derived
from BeagleSNES, including BeagleSNES or derivatives in commercial game
bundles, and/or using BeagleSNES as a promotion for your commercial
product.

The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.

Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.

Figure 1.3: The beaglesnes-license.txt file included in the BeagleSNES source code.

Overview
Downloading
Installing

% beagle

www.beaglesnes.org

2 — Installing BeagleSNES

Overview

BeagleSNES is more than just a single application. It is a complete POSIX operating system
environment, complete with a custom Linux kernel, a full file system, and configuration files
that tell BeagleSNES how to behave for the end user. Because of the general complexity of such
a large system, it can sometimes be difficult to get everything up and running smoothly. This
section will tell you how to download and install BeagleSNES so that you can get started using
it as quickly and painlessly as possible.

Figure 2.1: The 0.5 release of BeagleSNES, running on the BB-xM with DVI digital video
output (left) and on the BBB with the LCD3 cape (right).

All source code for the project, as well as a full file system image of a complete BeagleSNES
system, have been made available for download. Most users will only wish to try out BeagleSNES,
rather than hack on its source code, so this section will focus on using the full file system image.
Prior to starting, you’ll need the following items:

e FEither a BB-xM hardware platform that is at least revision C or a BBB platform that is at

least revision ASA. Earlier revisions have not been tested and are not suggested.

e An external power supply to provide full power to the system. Powering via USB will not

provide the necessary amount of current.

2.2

2.3

10 Installing BeagleSNES

e An HDMI-to-DVI cable (BB-xM) or microHDMI-to-HDMI cable (BBB), and a television
or monitor capable of displaying the digital video signal. Or, if you may wish to instead
use a Circuitco LCD3 cape board for displaying video for the BBB.

e For the BB-xM, external speakers or a headset for listening to the audio output'. The
audio for the BBB is sent over the HDMI connection.

e A microSD card with a capacity of at least 4 GB. BeagleSNES will rewrite the partition
table on this card, so make sure that it does not contain any data that you need.

e Copies of the software ROMs that you wish to use with BeagleSNES.

e One or two Tomee™USB SNES Gamepad controller(s)?>. The BB-xM supports using one
or two controllers, but the BBB only supports one unless you use an external USB hub
to provide additional USB ports. USB controllers other than the Tomee™will work with
BeagleSNES, but they will most likely need their buttons remapped.

While many SNES ROMs are widely available on the web, possession of these

Q&. ROMs is generally considered to be piracy of commercial software. No ROMs
are provided in the BeagleSNES file system images, and no help in obtaining
ROMs will be given. You’re on your own.

Downloading

There are two BeagleSNES file system images available for download. The first is a microSD
card image that contains a complete BeagleSNES system (bootloader, kernel, file system, etc.).
The second is a tarball of only the directory structure that includes the BeagleSNES application,
its associated resources, and sample configuration files. This image is intended for more advanced
users that wish to add the BeagleSNES emulator into an existing file system environment that
they have created. The complete microSD card image will be referred to as the full system image,
and the tarball of the BeagleSNES directory structure will be referred to as the application image.
The contents of the application image already exist inside of the full system image.

Direct download links to the latest versions of all BeagleSNES software components are
available at www.beaglesnes.org. SourceForge hosts all of the files for BeagleSNES?, but
www.beaglesnes. org should first be consulted for any additional information that you might
need about the latest version of BeagleSNES prior to downloading.

Installing

The easiest way to install BeagleSNES is to write the full system image to a microSD card
and then boot your BBB or BB-xM from that card. The speed class of the card is not all that
important, but all of the BeagleSNES development was performed using a class 10 card. Slower
speed classes may increase the time needed for a system boot, but otherwise the impact on the
performance of BeagleSNES is assumed to be negligible.

Some advanced BeagleBoard users may already have a working file system, kernel, etc.
on their system and only wish to install the BeagleSNES application. For those people, the
application image can be copied into their existing file system. Libraries used by BeagleSNES
(SDL, SDL_mixer, etc.)* are not shipped with the application image because you might not have

IEven when using an HDMI-to-HDMI cable for the video, audio will not be transmitted over the cable. This is
because the signal being transmitted over the HDMI cable is actually a DVI signal (video only), rather than an HDMI
signal that contains both video and audio data.

ZSeveral online vendors offer this particular USB controller for sale. It is the only controller that will be officially
supported for BeagleSNES.

Shttps://sourceforge.net/projects/beaglesnes/files/

4 A full list of the libraries used can be seen in section 3.4.

2.3 Installing 11

built your particular kernel with the same features that are in the BeagleSNES kernel (ALSA,
framebuffer console, etc.). It will be up to you to install the needed libraries on your system in a
fashion that is compatible with your current kernel features.

In addition, BeagleSNES needs to be started at boot. There is a script named service.sh” in
the application image that should be called by a boot cron job, the rc.local script, or other
similar mechanism upon system start-up. Modify the path to the BeagleSNES directory in
service.sh to point to the path where you have installed the application image on your system.

To copy the full system image to your microSD card, first download the image and then use
bunzip2 to decompress it. Execute a Unix dd command similar to the following to write the
image to your microSD card®:

username@host$ sudo dd if=beaglesnes_system.img of=/dev/sdX bs=1M

This command will take a little while to run, so be patient. The output file parameter (of)
will may vary depending upon what device represents the microSD card on your particular
Linux system. For most systems, /dev/sdX (sda, sdb, etc.) will represent the microSD card.
On others, you might see /dev/mmcblkX instead, where the "X" is a number (0 for the first
microSD card, 1 for the second, etc.). It is up to you to determine which it is. Don’t guess and try
different parameters without knowing for sure! A bad guess might end up with your accidentally
overwriting data on some other device in your system!

Once the full system image is copied onto the microSD card, the card will contain two file
system partitions. The first partition is the VFAT /boot partition. The kernel and bootloader live
in this partition, as do the BeagleSNES configuration files and any ROMs and game images
that you’ve copied to the system. The second partition is the EXT4 /rootfs partition where the
BeagleSNES application and base Linux distribution live. The VFAT filesystem on the /boot
partition is understood by Windows, the various OSes of Apple hardware, and Unix OSes like
Linux and FreeBSD, so it is simple to add new games and change configuration settings no
matter which OS you use to do so.

Insert the microSD card with the BeagleSNES image into your board and then power the
board up. After about 10-12 seconds, the game selection menu will appear, begin playing
background music, and display with the default dummy game entries.

When using BeagleSNES on a BBB, you do not have to hold down the "user

Q%; boot" button during boot. The BeagleSNES uEnv.txt file is written such that
the bootloader on the BBB’s eMMC understands that it should boot from the
microSD card and it will do so automatically.

A freshly-downloaded BeagleSNES microSD card image has a default boot
configuration for a BBB using HDMI for audio and video. It will not boot
for other configurations (BBB with LCD3 or BB-xM) until you change the
bootloader and uEnv . txt files. The next section explains how to change the
default bootloader and uEnv.txt files over to their respective versions for
booting BeagleSNES on the BBB with LCD3 or the BB-xM.

SThis script not only launches the emulator, but it also uses nice to adjust the priority of the emulator by -20.
This effectively makes the emulator the highest-priority user space process running on the system.

5Windows users can use the Win32 Disk Imager utility to write the image to the microSD card. Download it at:
http://sourceforge.net/projects/win32diskimager

Overview
Choosing a Boot Configuration
Configuring BeagleSNES

Modifying games.xml

Adding ROMs and Images

Configuring Gamepad Button Mapping

Configuring A Pause Combination :
Configuring GPIOs For Input -

Using BeagleSNES ° l
Game Selection Menu eog e

Pause Menu

www.beaglesnes.org

3 — Configuring and Using BeagleSNES

Overview

Within the full system image, the BeagleSNES application lives in the application root direc-
fory: /home/ubuntu/beaglesnes. To make things easier for the end-user, all of the standard
configuration files that control game configuration, controller button mapping, etc. are located
inside of the /boot partition. The /boot partition uses a VFAT filesystem, so files can be easily
copied to it or modified by mounting the microSD card on a Windows, Mac, or Linux system
and making the desired changes.

‘i When logging into a running BeagleSNES system, use the username "ubuntu"
0 and password "temppwd". You can use the "ubuntu" account to sudo any
m administrative commands that you feel need to be performed on the system.

Choosing a Boot Configuration

BeagleSNES supports three boot configurations:

e The BB-xM using DVI for video and the BB-xM audio jack for audio via external speakers.

e The BBB using HDMI for audio and video.

e The BBB using an LCD3 cape for video and some other hardware (such as a USB audio

device) for audio.

The default configuration for the full system image is for the BBB using HDMI. While the
BBB and BB-xM kernels have different names and can exist side-by-side in the /boot par-
tition, the bootloader and uEnv.txt files for each platform have the same names and can’t
co-exist in the same location. To address this issue, three scripts have been added to the
/boot partition to change the current boot configuration to one of the other configurations.
The setup_BBB_HDMI.sh script makes the BBB with HDMI the active boot configuration by
copying the bootloader and uEnv.txt files from the BBB_HDMI subdirectory into the root of
the /boot partition. The setup_BBB_LCD3.sh script makes the BBB with LCD3 the active
boot configuration in the same manner (copying files from the BBB_LCD3 subdirectory). The
setup_BBxM. sh script will do the same, but it will copy the files from the BBxM subdirectory
and make those BBxM files the active ones for the system. You won’t be able to execute these
scripts while the system is running (i.e. a BBB-configured full system image won’t even boot

3.3

14 Configuring and Using BeagleSNES

on a BB-xM, so you will not be able to shell into the system to run setup_BBxM. sh), so you
must mount the /boot partition of the microSD card on a Linux system, cd into the partition,
and then execute the script by using one of the following commands:

To set the system to BB-xM:

username@host$ sudo sh ./setup_BBxM.sh

To set the system to BBB with HDMI:

username@host$ sudo sh ./setup_BBB_HDMI.sh

To set the system to BBB with LCD3:

username@host$ sudo sh ./setup_BBB_LCD3.sh

Alternatively, you can simply copy the files from the desired boot configuration

Q%. subdirectory (BBxM, BBB_HDMI, BBB_LCD3) into the root of the /boot partition
to replace the existing boot files. This is the easiest approach for Windows users
that are unable to execute the shell scripts.

All three uEnv . txt files have two different configuration settings within the uEnv.txt file
itself: the "fast boot" configuration and the "development boot" configuration. By default, all of
the uEnv. txt files are set up for fast boot. The differences between the fast and development boot
configurations are the boot time and which OS features are enabled. Fast boot uses BeagleSNES
as the init process of the Linux system. Only the bare minimum of system daemons are started,
and only the file systems required for BeagleSNES operation are mounted. Networking is not
enabled under this configuration, and you also won’t be able to build the BeagleSNES in-place
on the hardware. But, the boot time for the system is only about 10-12 seconds. The development
boot configuration uses the standard Linux init daemon as the init process, and it enables all
features of the system, but it requires a boot time of about 20 seconds. Instructions on how to
switch between the fast boot and development configurations are given in Section 6. Unless you
are planning on doing BeagleSNES development, using the microSD card image for your own
development project, or need network access to transfer ROMs to your microSD card, stick with
using the fast boot configuration.

Configuring BeagleSNES

Once the image has been copied onto the microSD card and configured for your platform, you
have two options for configuring the BeagleSNES application and loading game ROMs into it.
The first method is to mount the microSD card on another system and then access the /boot
partition directly to copy and modify files. This is by far the easier method, since you are free
to copy files back and forth between your system and the BeagleSNES file system quickly and
easily.

The second method is to insert the microSD card into your BB-xM or BBB, power up
the system, and then use the ethernet interface' to shell into your BeagleSNES system and
access the file system remotely. The full system image uses DHCP to request an IP address
when an ethernet cable is attached to the system. You can use utilities like scp to copy files to
and from the system and ssh to shell into the system and edit files locally. You will have to
manually determine what IP has been assigned to the device by performing a broadcast ping or

IFor the BBB, you can also use an FTDI cable to shell into the system to make configuration changes (though you
won’t be able to copy files). The FTDI interface will work for both fast boot and networking configurations.

3.3.1

3.3 Configuring BeagleSNES 15

by looking at the administration interface of your router or DHCP server to see which IPs are in
use. Your BeagleSNES system will show up in the administration interface with the hostname
beaglesnes.

Q%;n If you are using a fast boot configuration, networking will not be enabled and
this method can’t be used.

There are three things that must be completed before your BeagleSNES is usable:

e Descriptions and information for each game listed in the selection menu must be added to

the games . xml file.

e ROM and image files associated with each game listed in the selection menu must be

copied into the file system.

e Gamepads and GPIO inputs must be configured to use the proper button mapping in the

games .xml file if the default mapping isn’t correct.

Adding game information is covered in Section 3.3.1. Copying ROMs and images into the
file system is covered in Section 3.3.2. Configuring button mappings for gamepads is covered in
Section 3.3.3.

For the current release, BeagleSNES’s game selection menu supports having a large, but not
unlimited, number of game titles. At least one game must exist in the actual system, of course,
but there is no specified upper limit. As more games are added to the menu, more system RAM
will be consumed and the start-up time for the BeagleSNES application will increase. While
no stress tests have been performed to see just how many games can be added to the system, it
should easily handle several hundred games.

All configuration and data files for BeagleSNES are located in the beaglesnes subdirectory
in the root directory of the /boot partition. On the running BeagleSNES system, the location
of the beaglesnes directory is /boot/uboot/beaglesnes. If the microSD card with Bea-
gleSNES is mounted on a Windows system, the path to the beaglesnes directory is off the root
of the drive that the /boot partition is mounted as. For example, if the microSD card is inserted
into a Windows system and the /boot partition becomes drive E:, the path of the beaglesnes
directory is E: \beaglesnes.

Modifying games.xml

The games.xml should be the only configuration file that you will need to modify for Bea-
gleSNES. It is an XML file that describes the button mapping for your controllers, GPIO mapping
for controls, and the game descriptions, box images, and ROM files associated with each game
listed in the game selection menu. games . xml is located in the beaglesnes subdirectory of the
/boot partition.

The XML tags used in the games . xml file are described in Table 3.1. A sample games.xml
that demonstrates some of these tags is shown in Figure 3.1. Two sample game entries are listed.
The first game, GameTit1lel, has an entry that defines every possible field. The second game,
GameTitle2, has an entry that defines only the bare minimum fields required to make a valid
entry (<title> and <rom>). If the other tags are not defined, default values are used in their
place. A full sample games.xml file is included in both the full and application file system
images. It contains a dummy configuration for a menu with 10 ROMs, gamepad button mappings
for the player 1/2 controllers, GPIO inputs, and a pause menu button combo. The sample will act
as a template to help guide you as you configure BeagleSNES for your own use.

16

Configuring and Using BeagleSNES

XML Tag Purpose Minimum Maximum
<config> Top level tag of XML file 1 1

<gpio> Mark section of GPIO buttons 0 1

<gpio_*> Specific GPIO button mapping 0 1 per <gpio>
<player1/2> Mark section of button mapping 0 2

Various tags Map buttons (<vaxis>, <select>, etc.) | 0 1 per <player?>
<pause_combo> | Combo that triggers pause menu 0 1
<pause_key> Button that is part of the pause combo | 0 No limit
<snes> Mark section of all SNES games 1 1

<game> Mark section of a single game 1 No limit
<title> Title of a game 1 per <game> | 1 per <game>
<rom> Filename of a game ROM 1 per <game> | 1 per <game>

<year>1999</year>
<genre>Genrel</genre>
<genre>Genre2</genre>
<text>Description text line 1</text>
<text>Description text line 2</text>
<text>Description text line 3</text>
<text>Description text line 4</text>
<text>Description text line 5</text>
</game>
<game>
<title>GameTitle2</title>
<rom>filename2.smc</rom>
</game>
. More <game></game> tags go here for more games ...
</snes>
</config>
Figure 3.1: Example of a games . xm1 file.

Configuring Gamepad Button Mapping

There are a variety of USB human interface devices (HIDs) that are recognized as joysticks by
the Linux kernel’s USB subsystem. Not all of these devices are true joysticks (they might be
gamepads, or even devices that looks nothing like a game controller), but they all fall within the
same category of "close enough in functionality to a joystick to be treated as such by the kernel".
While these joysticks and gamepads can be used to provide input to BeagleSNES, the physical
buttons of each controller must first be mapped to the "logical" buttons inside BeagleSNES that
correspond to the buttons of the original SNES controller.

As a reference, the original SNES controller is shown in Figure 3.3. This controller has a
directional pad that provides two "axes" for directional input (an up/down axis and a left-right
axis). It also provides a total of eight buttons: the rectangular start and select buttons, four round
input buttons for A/B/X/Y, and two shoulder buttons on the edge of the controller for L (left) and
R (right).

BeagleSNES uses the configuration file snes9x. conf to define the default mappings be-
tween physical joystick buttons and axes to the logical buttons and axes used by the emulator.
snes9x . conf is located in the beaglesnes directory of the /boot partition. The button map-
ping settings are located in a section within the snes9x . conf named [BeagleSNES Controls].
Previous versions of BeagleSNES required users to change this section to map SNES gamepad
buttons to the buttons of your joystick. But, the snes9x. conf configuration file is now com-
pletely “off-limits” for the end-user. All button mappings are now set using the games.xml
file.

3.34

18 Configuring and Using BeagleSNES

m“ beagle

No Image
Available

Figure 3.2: The included 200x145 pixel blank_box.png placeholder image that is used if no
image is specified.

.
< SUPER NINTENDD

+//

SELECT ~ START

Figure 3.3: The original SNES controller. The L (left) and R (right) shoulder buttons are located
on the top edge of the controller.

‘ Don’t touch the snes9x. conf file! All configuration settings are now made
m via the games . xm1 file.

The <playerl> and <player2> tags in the games.xml file describe button mappings be-
tween your joystick and the SNES gamepad. Figure 3.4 demonstrates the use of these tags. The
default button mappings are used for any controller or button not explicitly mentioned in the
games.xml. The only exception to this is the <pause> tag. If you have a joystick with enough
buttons to map all of the SNES controller buttons and still have at least one button to spare, the
extra button can be mapped to trigger the pause menu. Unless the <pause> is explicitly mapped,
though, no default is mapped.

Configuring A Pause Combination

If you can’t spare an extra button to trigger the pause menu, you can map the pause to a
combination of buttons. When this button combo is pressed on the player 1 controller, the pause
menu will trigger. For example, you can map the left and right trigger buttons and the start and
select buttons together as a pause button combo. When all four are pressed simultaneously, the
pause menu triggers. Because you don’t want the pause button combo to be a set of buttons that
will interfere with gameplay, selecting three to four buttons for the combo is advised.

The pause combo is defined by using two tags: <pause_combo> and <pause_key>. An
example pause combo that uses the left and right trigger buttons and the start and select buttons
is shown in Figure 3.5.

This particular pause combo assumes the same button mapping as seen in the <player1>
tag in Figure 3.4. For example, the first <pause_key> of the combo is for button 4. The
<playerl> tag maps 4 to the left trigger button in the <L> tag. If the button mapping changes in
the <playerl> tag, the <pause_key> tags must be changed to match it.

3.3.5

3.3 Configuring BeagleSNES 19

<?xml version="1.0"7>
<config>
<playeri>
<vaxis>1</vaxis>
<haxis>0</haxis>
<L>4</L>
<R>5</R>
<A>1
2
<X>0</X>
<Y>3</Y>
<select>8</select>
<start>9</start>
<pause>11</pause>
</playeri>
<player 2>
. similar tags go here for the player 2 controller ...
</player2>
. other tags go here ...
</config>

Figure 3.4: Controller button mapping portion of the games . xm1 file.

<pause_combo>
<pause_key>4</pause_key>
<pause_key>b</pause_key>
<pause_key>8</pause_key>
<pause_key>9</pause_key>

</pause_combo>

Figure 3.5: XML for a pause button combo in the games . xml file.

Configuring GPIOs For Input

The BBB platform has support for mapping GPIO inputs as player 1 controller inputs. The SNES
directional pad and buttons, and even the pause button, can be mapped to GPIOs. A maximum of
13 GPIO inputs (four for the d-pad, eight for buttons, and one for pause) can be mapped using a
contiguous block of the BBB’s pins (P8.7 through P8.19). Mapping the GPIOs uses the <gpio>
tag and a series of <gpio_*> tags that specify particular SNES controller buttons and controls.
Figure 3.6 shows a sample GPIO mapping.

Each individual <gpio_#*> tag contains a number from one through thirteen. These numbers
correspond to the pins on the P8 header of the BBB. Pin P8.7 is 1, pin P8.8 is 2, etc. up
through pin P8.19, which is 13. If a particular pin number is not mapped, it won’t be initialized
by BeagleSNES. For more information on the hardware details of trigger GPIOs for input to
BeagleSNES, check out Section 8.4.

3.4

20 Configuring and Using BeagleSNES

<gpio>
<gpio_gpleft>1</gpio_gpleft>
<gpio_gpright>2</gpio_gpright>
<gpio_gpup>3</gpio_gpup>
<gpio_gpdown>4</gpio_gpdown>
<gpio_L>5</gpio_L>
<gpio_R>6</gpio_R>
<gpio_A>7</gpio_A>
<gpio_B>8</gpio_B>
<gpio_X>9</gpio_X>
<gpio_Y>10</gpio_Y>
<gpio_select>11</gpio_select>
<gpio_start>12</gpio_start>
<gpio_pause>13</gpio_pause>

</gpio>

Figure 3.6: XML for mapping GPIOs to SNES controls in the games . xm1 file.

Using BeagleSNES

Once the system has been configured, it is now ready for use. BeagleSNES expects either one
or two USB gamepads to be plugged in. Two host USB ports on the BB-xM system have been
designated by BeagleSNES as the gamepad ports: one for "player one" and the other for "player
two". Any gamepad that is not plugged into one of these designated USB ports is ignored.
Figure 3.7 shows which two BB-xM USB ports are designated for the gamepads.

. e

Figure 3.7: The USB ports of the BB-xM. The top-left USB port is reserved for the "player one"
gamepad, and the top-right USB port is reserved for the "player two" gamepad.

The BBB has only one host USB port, so there are two options for using gamepads with the
system. The first option is to plug a gamepad into the host USB port. This is the port for the
"player one" gamepad, and no "player two" gamepad can be used. The second option is to plug a
USB hub into the host USB port and then plug one or two gamepads into the hub. Much like the
host USB ports of the BB-xM, one port of the hub will be the "player one" port, and another will
be for "player two". Whichever physical ports on the hub report as the first and second logical
ports will be used as the "player one" and "player two" ports, respectively. Any gamepad that is
not plugged into one of these designated USB ports on the hub is ignored.

3.4.1

3.4.2

3.4 Using BeagleSNES 21

Game Selection Menu

Assuming that you have successfully completed the steps of the adding game descriptions,
ROMs, and box images to your BeagleSNES system, it will now boot up to a complete menu
of SNES titles that are ready to be played. This game selection menu will only respond to the
"player one" controller, and the menu will display the text "PLEASE CONNECT PLAYER 1
GAMEPAD" if no gamepad is connected to the "player one" USB port®. Press up and down on
the gamepad’s direction-pad to change the currently selected title on the menu. Press either the
"select" or "start" gamepad button to launch the currently selected title. If there are GPIO inputs
that are mapped for up/down and start/select, they can also be used to navigate the menu and
launch a title. Once a title has been launched, the menu will fade out and the emulator will begin
execution.

Once you have launched a title and left the game selection menu, you must use
the pause menu to return to the game selection menu to select a different game
to play.

Pause Menu

The pause menu can only be triggered while playing a game. Its purpose is to allow the user to
load and save snapshots of the current game state, exit the current game and return to the game
selection menu, and, of course, pause the game. Figure 3.8 shows the pause menu.

LAST SNAPSHOT [& & § "' LAST SNAPSHOT

)} ‘: » Resume Game A N ' ¥ Resume Game
\ napsh -
| || Save Snapshot K b | |»Save Snapshot £

| 4| Return To Game Selection A e " W | Return To Game S

Figure 3.8: The pause menu. While in-game (left), triggering the pause menu will bring up a
set of menu options (middle). If a snapshot for the current game has been previously saved,
the “Load Snapshot” option will become active and a thumbnail will be shown in the “LAST
SNAPSHOT” preview window.

There are three ways to trigger the pause menu:
o If the pause menu has been mapped to a single gamepad button in games .xml, press that
button.

e If a pause button combination has been mapped in games . xm1, press that button combo.

e If the pause menu has been mapped to a GPIO in games . xm1, trigger that GPIO.

Pressing up and down on the player 1 gamepad, or triggering the appropriate GPIOs, will
navigate the pause menu. Likewise, using select/start or its GPIO equivalent will select a menu
option. Selecting “Resume Game” will remove the pause menu and unpause the game. Also,
pressing the pause button or button combo, or triggering the pause GPIO, a second time will also
remove the pause menu and unpause the game.

The “Load Snapshot” and “Save Snapshot” menu options allow you to save the current state
of the game and then load it to return to it at any time. This is useful for saving the progress
of the current play session when you need to take a break and are not near a point in the game

2The LCD3 display target will not display this warning.

22 Configuring and Using BeagleSNES

where progress can be saved. It is also useful for saving your game just prior to making that
difficult jump or fighting a tough boss battle. Snapshots are named after the filename of the ROM
that they are associated with, so renaming ROMs will make your save states seem to disappear
(although they are still present on the microSD card). If no snapshot for the current game exists,
the “Load Snapshot” option will be grayed-out and unavailable. Only one snapshot can exist for
each game. Once a snapshot is saved, the prior snapshot is overwritten.

Snapshots are stored in the savestate subdirectory of the beaglesnes direc-
tory on the /boot partition.

The “Return to Game Selection” menu option exits the current game and return you to the
game selection menu. Be sure to save a snapshot of your current game if you want to return to it
later. Selecting this option is roughly the same as turning off the power on your SNES console:
your current game will be lost forever.

Overview

% beagle

www.beaglesnes.org

4 — Troubleshooting

Overview

If you are unable to dd the full system image to your microSD card:

e Do you not have bunzip2 on your system? For Ubuntu users, you can apt-get it by
installing the bzip2 package.

e Is your download corrupt? Does the MD35 hash for the file match the hash listed for the
file at SourceForge?

e Did you disable the write-protect switch on your microSD card?

e Do you have permissions to write to the raw microSD card device file?

e Are any pre-existing partitions on the microSD card currently mounted? Unmount all
partitions on the microSD card before performing the dd.

If you can’t get your system to boot after writing the full system image to your microSD
card:

e Are you using an external power supply (SVDC 2A)? The system won’t boot when using
only USB power.

e Did you disable the write-protect switch on your microSD card? The BeagleSNES still
needs to write out log files to the local file system.

o [s there any output coming from the debug serial or FTDI port? If there is nothing, dd the
full file system to the microSD card again after you verify the MD5 hash of the downloaded
file.

e Did you cleanly unmount the microSD card from the Linux system that you used to dd the
image to the card? Some Linux systems will auto-mount the microSD card as soon as it
has a valid file system on it. If you just pull the microSD card out when it is mounted, it is
possible to damage the boot partition.

e Did you change the boot configuration from the default BBB HDMI configuration if you
needed to do so? If you are using a BBxM, you will need to change the boot configuration
to the BBxM configuration to use the proper bootloader.

If you can see the boot splash screen, but the emulator won’t start:

e If you revert to the backup of the original games.xml file (you made that backup, right?)
does the emulator start? If so, you have a mistake in your games . xm1 file.

e If you do not see anything wrong with your games . xml file, does the debug output over
serial or FTDI show any errors in parsing the XML? Any errors will give you hints as to

24 Troubleshooting

where troubles may lie in your games.xml.

e Make sure that all box image and ROM filenames are correct. The filenames are case-
sensitive, and you do not need to add the directories to the filenames.

o If nothing else works, shell into the system via the network and try to manually execute the
service.sh script in the application root directory. You will need to sudo the command
or be a superuser in order to do so. Watch for any debug output that might give you a hint
as to why it is not working.

o If all else fails, send us a bug report and we’ll check it out.

If the game selection menu appears, but it does not respond to your USB gamepad:

e Do you have the Tomee USB gamepad? If not, you may have to play with the button
mappings in the games . xml file.

e [s your gamepad plugged into the correct USB port? Do you see the message telling you
to plug in the "player one" gamepad? Only a gamepad that is plugged into the "player
one" USB port can control the menu selection screen.

e For the BBB, there is a known kernel bug that causes USB devices to not be enumerated
by the USB bus. Press the "Reset" button (button S1) or unplug and plug in the power
cable to reset the system and try again. It may take a few tries, unfortunately. Watch the
FTDI output for an Error -110 to see if this is the particular problem that you are seeing.
This problem appears to occur less often once the system has been running for a while,
and it may take several tries before the errors go away and the USB subsystem enumerates
properly.

e For the BBB, plugging an external USB hub into the host USB port can be very temper-
mental. If using an external hub, plug in the hub and all controllers prior to starting the
system. Sometimes the external hub will stop responding if all controllers are removed
from it. An unpowered external hub will work, but it makes the BBB far more sensitive
and can create problems when hotplugging controllers.

e Verify that your gamepad is operating properly by testing it with another computer.

If the game selection menu starts, but is missing one or more of your titles:

e If you do not see anything wrong with your games . xml file, does the debug output over
serial or FTDI show any errors in parsing the XML? Any errors will give you hints as to
where troubles may lie in your games . xm1.

e Did you use predefined entries in the XML for any special characters (Section 3.3.1)?
Parsing of the XML will stop once an error is reached.

If the game selection menu starts, and you can launch a title, but then the screen goes
blank and nothing happens:

e Make sure the filename for the ROM is correct in the games.xml file.

e Make sure that the ROM is valid by executing it under another emulator.

e Make sure that the ROM is in the rom subdirectory of the beaglesnes directory in the
/boot partition.

submit a bug report to Andrew at hendersa@icculus.org.

‘ If you run into some other problem that is not covered here, please feel free to

Overview

Bootloader

Kernel

BeagleSNES Application

% beagle

www.beaglesnes.org

5 — Building BeagleSNES

Overview

BeagleSNES is more than just a single application. It is a complete operating system with a
custom Linux kernel, a full file system, and configuration files that tell BeagleSNES how to
behave for the end user. Because of this, it can be sometimes be difficult to get up and running.
This section focuses on building the individual components of BeagleSNES using the build scripts
that have been included to assist you. Unless you are interested in installing/uninstalling/changing
configurations/libraries/binaries in the file system, it is probably best to leave the file system
as-is and concentrate on modifying only the bootloader, kernel, and BeagleSNES application.

Bootloader

BeagleSNES’s bootloader is a modified version of the v2014.01 release of U-Boot. The Bea-
gleSNES source code archive for the bootloader is just a tar’d-up version of the hacked-on,
working code base of what is running inside of the BeagleSNES system. Use the following steps
to build it:

e Install a cross-compiler tool chain on your development system. BeagleSNES’s develop-
ment was done using a tool chain built using crosstool-ng!, though you could probably
install an ARM development tool chain via apt-get or whatever package manager your
particular Linux distribution is using. It is also possible to use the tool chain that is
included with the BeagleSNES kernel source.

o Edit the beaglesnes-build.sh shell script in the beaglesnes_u-boot code base to
point to the location of your cross-compiler tool chain. You’ll need to modify the
TOOL_PATH and TOOL_CHAIN variables to point to the path where your tool chain is
located and the prefix of each tool chain binary, respectively. crosstool-ng installs
the tool chain in $ (HOME) /x-tools, so that will most likely be the value that you need
to set for TOOL_PATH. Tool chain binaries are typically named following the format of
$TARGET_ARCH$TOOL. $TOOL is gcc, g++, etc., and $TARGET_ARCH is probably some-
thing similar to arm-cortex_a8-linux-gnueabi-.

e Edit the beaglesnes-build. sh shell script to choose to build the bootloader for the BB-
xM or the BBB. To do this, there are two lines in the shell script that build a configuration

'Download crosstool-ng at: http://crosstool-ng.org

26 Building BeagleSNES

for omap3_beagle_config (BB-xM) and am335x_evm_config (BBB). Uncomment
only one of these two lines to select the hardware to build the bootloader for. The
comments in the shell script will guide you.

e Once you have set up your beaglesnes-build. sh script, execute it. This will start the
build process and generate a variety of files in the beaglesnes_u-boot directory. The
two files that you are interested in are MLO (the first stage bootloader) and u-boot . img
(the second stage bootloader that actually loads the kernel).

e Mount the first partition (the boot partition) of a microSD card that has had the full
BeagleSNES file system image written to it. Back up the ¥L0 and u-boot. img binaries
in the root of that mounted partition.

e Replace the MLO and u-boot . img binaries on the microSD card (after you have backed
them up) with the MLO and u-boot . img that you just built.

e sync the microSD card’s mounted boot partition’s file system, then unmount it.

You’ve just built the BeagleSNES bootloader and installed it. Insert the microSD card into
the system, power it up, and it should now boot using your new bootloader. Remember that
your new bootloader files will be replaced with the stock BeagleSNES ones if you execute the
setup_BBB. sh or setup_BBxM. sh scripts in the boot partition.

Kernel

BeagleSNES’s BB-xM kernel is built from a snapshot of the Linux 3.7.10 kernel branch of
Robert Nelson’s stable kernel project” that was retrieved using git on 11 March 2013. The BBB
kernel is built from a snapshot of the 3.8.13 kernel branch from the same project, retrieved on 02
June 2013. Both of these projects contains a script called build_kernel.sh that performs a
number of useful activities:

o Installs a cross-compilation tool chain for building the kernel.

e Checks for new kernel patches.

e Applies kernel patches (over 200 of them!) to the kernel source tree for all BeagleBoard
platforms.

e Builds the kernel.

The BeagleSNES kernel source trees contain the build_kernel. sh file, but it has been modified.
The script no longer checks for kernel patches and updates or downloads the tool chain. The
tool chain is already present in the BeagleSNES kernel source package?, so there is no need to
download it again. To build one of the kernels, use the following steps:

e Optional: If you want to rebuild the splash screen that displays during kernel boot, execute
the build_beagle_splash.sh script. This will convert the splash screen image file*
into the proper format and then copy it to its place in the kernel source tree. Note that the
splash screen image is different in the two kernel trees. For BB-xM, it is 640x480. For
BBB, it is 720x480.

e Execute the build_kernel. sh script.

e Choose to "Exit" the kernel configuration tool without changing any settings. Note: Don’t
change the configuration unless you know what you are doing! The kernel will then begin
building, which will take a few minutes. All generated binaries will be under the deploy
directory of the BeagleSNES kernel source.

e Mount the first partition (the boot partition) of a microSD card that has had the full Bea-
gleSNES file system image written to it. Back up the zImage (BB-xM)or 3.8. 13-bone20. zImage

Thttps://github.com/RobertCNelson/stable-kernel
3The tool chain is in the d1/gcc-1linaro-arm-1linux-gnueabihf-4.7-2012.12-201214_linux directory.
4beaglesnes_kernel_splash .png

5.4

5.4 BeagleSNES Application 27

kernel binary in the root of that mounted partition.

e Replace the kernel binary on the microSD card (after you have backed it up) with the
deploy/3.7.10-x9.ulmage or deploy/3.8.13-bone20.zImage kernel binary that
you just built. Rename the 3.7.10-x9.uImage kernel to zImage in the /boot parti-
tion.

e sync the microSD card’s mounted boot partition’s file system, then unmount it.
Optional: The BeagleSNES does not load any kernel modules (everything necessary is built
directly into the kernel), but if you also want to install the kernel modules created when the
kernel is built, use the following steps (performing the commands using sudo):

e Mount the second partition (the rootfs partition) of a microSD card that has had the full
BeagleSNES file system image written to it. Back up the /lib/modules/3.7.10-z9
(BB-xM) or /1ib/modules/3.8.13-bone20. zImage (BBB) directory in the root of that
mounted partition.

e If building for a BB-xM, replace the /1ib/modules/3.7.10-x9 directory on the mi-
croSD card (after you have backed it up) with the deploy/mod/1lib/modules/3.7.10-x9
directory that you just built.

e If building for a BBB, copy the file deploy/3.8.13-bone20-modules.tar.gz to the
/1lib/modules directory on the microSD card. gunzip and untar the file. Replace the
/1ib/modules/3.8.13-bone20 directory on the microSD card (after you have backed
it up) with the /1ib/modules/1ib/modules/3.8.13-bone20 directory.

e sync the microSD card’s mounted rootfs partition’s file system, then unmount it.

You’ve just built the BeagleSNES kernel and installed it. Insert the microSD card into the system,
power it up, and it should now boot using your new kernel.

Advanced Users: If you are interested in using the latest kernel source and patches, fetch the
latest code from Robert Nelson’s Git repository and replace the . config in the kernel source
with the beaglesnes_config file from the top-level directory of the BeagleSNES kernel source.
The beaglesnes_config file is a copy of the kernel configuration that is used when building
the BeagleSNES kernel. It will ensure that you build a kernel with the proper features enabled.
By default, the kernel from Git tries to be generic as possible by building a large number of
hardware drivers as modules. BeagleSNES does not build most of these drivers, and the ones
that it does need are linked directly into the kernel, rather than being built as modules.

BeagleSNES Application

The BeagleSNES application is both the game selection menu front-end and the SNES emulator
back-end. Both components are built as a single binary. The application has the following library
dependencies:

e The Simple DirectMedia Library® for general audio, video, and input.

e The SDL_ttf library® for rendering TrueType fonts.

e The SDL_image library’ for loading image files of various formats.

e The SDL_mixer library® for loading and playing music and sound effects.

e The Expat library® for parsing the XML games . xm1 file.
Because it can be difficult to build and install all of these libraries correctly using a cross-compiler
tool chain, it is easiest to build both the libraries and the BeagleSNES application on the BB-xM
or BBB. The BeagleSNES full system image contains all of these libraries and header files, as

Shttp://www.libsdl.org
*http://www.libsdl.org/projects/SDL_ttf
"http://www.1libsdl.org/projects/SDL_image
8http://www.libsdl.org/projects/SDL_mixer
http://expat.sourceforge.net

28

Building BeagleSNES

well as a complete development tool chain. These instructions will assume that you are building
BeagleSNES inside of the full system image.

If you decide to use a package manager (like apt-get) to install the needed
libraries, you’re going to drag in a number of additional dependencies that you
won’t need. Typically, SDL is built with X11 support, so your package manager
will install a large number of X-Windows applications and libraries. It is better

Q%. to build the libraries manually than to install them via a package manager. If
M you don’t have the patience or experience to manually install the libraries and

their dependencies, stick with using the libraries and headers already installed in
the full file system image. These libraries include only the most basic features
of SDL (framebuffer console graphics, ALSA audio, and the joystick input
subsystem).

The BeagleSNES application source code is available as a downloadable source code archive.
The source code is also installed inside the full system image!®. To build the BeagleSNES
application on a BB-xM or BBB system, use the following steps:

Shell into the running BeagleSNES system (username "ubuntu", password "temppwd").
The easiest way to do this is via the serial debug interface!!, though you can also use ssh
to shell into the system via the ethernet interface.

Enable swap space. swapfile is a one gigabyte swap file that has already been created for
you in the full system image. You only need to turn on swapping by using the command:
sudo swapon /var/cache/swap/swapfile

cd into the /home/ubuntu/build/beaglesnes_src/sdl directory.

Execute the configure script in this directory. The script should find the tool chain and
all of the necessary libraries and headers to build the application. For best performance,
execute the configure script with the --enable-neon option:

ubuntu@beaglesnes$ sudo ./configure --enable-neon

Edit the beagleboard.h file to select which platform you are building for. There are
two #define statements: one for BEAGLEBONE_BLACK and one for BEAGLEBOARD _XM.
Uncomment the #define that describes your system, and comment out the other one.

If you have chosen to enable the BEAGLEBONE_BLACK build via beagleboard.h, you can
also comment in the "#define CAPE_LCD3 1"in beagleboard.h to enable the support
for the LCD3 display instead of the HDMI video output.

Execute a make command in this directory. The application will now build, and it will take
a while. If you did not enable swapping, the system will exhaust its RAM and fail on this
step.

Optional: Shrink the generated binary (and reduce its loading time) by stripping it via the
command: strip ./snes9x-sdl

Copy the generated snes9x-sd1 binary to the /home/ubuntu/beaglesnes directory. If
you built a binary for BBB with HDMI video, name it snes9x-sd1.BBB.HDMI. If you
built a binary for BBB with HDMI video, name it snes9x-sd1.BBB.LCD3. If you built a
binary for BB-xM, name it snes9x-sd1.BBxM. These are the files that the service.sh
script looks for.

Execute a sync command.

10

s in the /home/ubuntu/build/beaglesnes_src directory within the full system image.

llRead http://elinux.org/BeagleBoardFAQ for more information on setting up and using the serial debug
interface

Overview

Bootloader

BeagleBoard-xM Kernel
BeagleBone Black Kernel

Other Improvements to Boot Speed

% beagle

www.beaglesnes.org

6 — BeagleSNES Kernel and Bootloader

Overview

BeagleSNES uses the U-Boot bootloader! and a trimmed-down Linux kernel. The configuration
of both of these components impacts both the runtime performance of the system and the time
necessary to boot the system. A general timeline of the events that occur as the system boots is
as follows:

Time (seconds) | Events Taking Place

0 System is powered up

Bootloader begins executing immediately

Bootloader fetches its configuration file from the boot partition
Bootloader initializes DVI video at a resolution of 1280x720 (BB-xM)
2 Bootloader has finished loading and decompressing the kernel

Kernel begins bootstrapping

Bootloader terminates execution

5 Kernel initializes DVI video at a resolution of 640x480 (BB-xM)
Kernel turns on framebuffer console (BB-xM)

Boot splash screen is displayed (BB-xM)

8 Kernel initializes HDMI video at a resolution of 720x480 (BBB)
Kernel turns on framebuffer console (BBB)

Boot splash screen is displayed (BBB)

init.sh script in the BeagleSNES image is executed

10 Boot splash screen disappears

BeagleSNES is launched via the service. sh script

Game selection menu logo and gradient bar appear on the screen

12 Game selection menu displays entire screen and begins playing audio
System is now accepting user input and is ready for use

Table 6.1: Timeline of BeagleSNES events, from power up to "usable system".

While waiting 12 seconds for an embedded system to achieve a usable state is still quite a

"http://www.denx.de/wiki/U-Boot

6.2

30 BeagleSNES Kernel and Bootloader

long time, earlier development versions of BeagleSNES would take as long as 35 seconds to
go from power up to usable system. There is still room for a great deal of improvement in the
boot speed of BeagleSNES. Other projects, such as SwiftBeagle?, have done an excellent job
discovering various ways that the bootloader and kernel can be changed in order to decrease boot
time. In this section, several of these points will be discussed as the bootloader and kernel of
BeagleSNES are examined.

Bootloader

BeagleSNES’s U-Boot bootloader has had two noteworthy modifications: the standard 3-second
delay prior to loading the kernel has been removed® and preliminary support has been added
for a bootloader splash screen* for the BB-xM. Version 2013.04 (used in BeagleSNES v0.4) is
the earliest version of U-Boot that will work for BeagleSNES because it is the first version to
include device tree support® for the BBB’s cape bus.

A BeagleSNES bootloader configuration file, uEnv. txt, exists for the BB-xM and both
BBB boot configurations. Each of the uEnv.txt files set a U-Boot environment variable called
bootargs. This value of this variable is the set of command line arguments that are passed
to the Linux kernel when the kernel begins its bootstrapping process. There are two sets of
bootargs in each of the uEnv.txt files: one for a quicker-booting configuration that specifies
the BeagleSNES init.sh script as the "init" process for the Linux kernel, and one for a slower-
booting configuration that uses the default Linux systemd® as the "init" process. By default,
the "fast boot" configuration is enabled, which enables BeagleSNES to get up and running as
quickly as possible.

The quicker-booting configuration allows the system to boot in about half of the time it
takes the slower-booting configuration. This is because the quicker configuration does not start
many of the system daemons that are started in the slower configuration (since systemd is not
used and the usual init scripts are not executed). The quicker configuration performs only the
bare minimum of remounting the root filesystem read-write, starting udevd (to create the device
files for the USB gamepads in the /dev filesystem), and adjusting the ALSA mixer levels. The
downside to this is that many other important services, such as networking, are never started.
Aside from the difference in the "init" process that is used, both configurations for each platform
specify bootargs that turn on debug output to the serial port, enable the DVI or HDMI video
output at specific resolutions, and shut off the framebuffer’s blinking cursor.

Switching between the faster and slower boot configurations requires editing the vEnv. tzt
file. The bootargs for both configurations are in each of the uEnv . txt files, so it is only a matter
of commenting out the configuration that isn’t needed and commenting in the configuration that
is. Make sure that only one configuration is commented in at a time. Comments have been
included in the uEnv. txt files to guide you. The uEnv.txt files that come with BeagleSNES
can be seen in Figures 6.1 (for the BB-xM), 6.2 (for the BBB with HDMI), and 6.3 (for the BBB
with LCD3).

Thttp://code.google. com/p/swiftbeagle/

3This setting is located in the file include/configs/omap3_beagle.h (BB-xM) and
include/configs/am335x_evm.h (BBB) in the bootloader source. It is the CONFIG_BOOTDELAY pre-processor
define.

4These modifications have been added to the file board/ti/beagle/beagle. c in the bootloader source. Check
outdss_init (), which sets up the memory buffer and does some register adjustments.

3To learn more about the device tree and how it is used in the Linux kernel to describe hardware peripherals for
embedded devices, go to http://www.devicetree.org

%To learn more about systemd and its role as a system and service manager for Linux, go to
http://wuw.freedesktop.org/wiki/Software/systemd

O O 001NN B W —

—_

11
13
14

15
16

17
18

19

6.3

6.3 BeagleBoard-xM Kernel 31

#kernel_file=3.7.10 —x9.ulmage

kernel_file=zImage

console=tty02,115200n8

mmcroot=/dev/mmcblkOp2 ro

mmcrootfstype=ext4 rootwait fixrtc

boot_fstype=fat

xyz_load_image=${boot_fstype}load mmc 0:1 0x80300000 ${kernel_file}

xyz_load_dtb=${boot_fstype}load mmc 0:1 0x815f0000 /dtbs/${dtb_file}

xyz_mmcboot=run xyz_load_image; echo Booting from mmc

video_args=setenv video vram=12MB omapfb.mode=dvi:640x480—-16@60 omapdss.
def_disp=dvi

device_args=run video_args; run expansion_args; run mmcargs

This is for a slower boot, development setup

#mmcargs=setenv bootargs console=${console} ${video} root=${mmcroot}
rootfstype=${mmcrootfstype} ${expansion} coherent_pool=IM mpurate=800
console=blank vt.global_cursor_default=0

This is for a quick boot, non—development setup

mmcargs=setenv bootargs console=${console} ${video} root=${mmcroot}
rootfstype=${ mmcrootfstype} ${expansion} coherent_pool=IM mpurate=800
console=blank vt.global_cursor_default=0 init=/home/ubuntu/beaglesnes/
init.sh

expansion_args=setenv expansion buddy=${buddy} buddy2=${buddy2} camera=${
camera} wll2xx_clk=${wll12xx_clk}
loaduimage=run Xxyz_mmcboot; run device_args; bootm 0x80300000

Figure 6.1: BeagleSNES’s BB-xM uEnv.txt bootloader configuration file.

BeagleBoard-xM Kernel

BeagleSNES was originally developed specifically for the Rev C BB-xM. While the Linux kernel
has good support for the BB-xM hardware (OMAP3, TWL4030, etc.), every embedded system
kernel must be tuned and patched for the specific environment in which it will be deployed.
The BeagleBoard platforms are no exception. BeagleSNES’s kernel codebase uses a series of
207 kernel patches that have been contributed and vetted by the BB community. While not
every patch is specific to the BB-xM (BeagleBoard- and BeagleBone-specific patches are also
applied), many of the patches increase system stability by improving voltage core management
and thermal management.

The kernel itself has been compiled to remove many features that aren’t needed for Bea-
gleSNES. This has reduced the compressed size of the kernel from 3.4 megabytes with additional
modules dynamically loaded down to a little less than two megabytes with no additional modules
loaded. While this might not seem like a big difference, it has reduced the boot time of Bea-
gleSNES by about 6 seconds. Roughly 200 ms of these savings are attributed to the reduction
in time needed to load and decompress the smaller kernel. The bulk of the savings comes from
eliminating the time needed to initialize various kernel subsystems that are never be used. For
example, many security features (SELinux, address space layout randomization (ASLR), stack
overflow protection), symmetrical multi-processing support, support for various file system types,
SCSI support, etc. were all originally compiled into the kernel.

The BB-xM’s DM3730 CPU begins running at a clock speed of 600 MHz, but is quickly
changed to 800 MHz per the mpurate kernel command line option that is provided by the
bootloader. The "performance" governor’ forces the CPU clock rate to remain at its maximum

7Option CPU Power Management ->CPU Frequency scaling in the kernel configuration menu.

— O 0 00 1O\ WU K~ W —

—_ =

12
13

14
15

6.4

32 BeagleSNES Kernel and Bootloader

kernel_file=3.8.13 —bone20.zImage
console=ttyO00,115200n8
mmecroot=/dev/mmcblkOp2 ro
mmcrootfstype=ext4 rootwait fixrtc

loadkernel=load mmc ${mmcdev }:${mmcpart} 0x80200000 ${kernel_file}
loadfdt=load mmc ${mmcdev}:${mmcpart} 0x815f0000 /dtbs/${fdtfile}
boot_ftd=run loadkernel; run loadfdt

This is for a slower boot, development setup

#mmcargs=setenv bootargs acpi=noirq console=blank vt.global_cursor_default=0
mpurate=1000 video=720x480—16@60 console=${console} root=${mmcroot}
rootfstype=${ mmcrootfstype}

This is for a quick boot, non—development setup

mmecargs=setenv bootargs acpi=noirq console=blank vt.global_cursor_default=0
mpurate=1000 video=720x480—-16@60 console=${console} root=${mmcroot}
rootfstype=${ mmcrootfstype} init=/home/ubuntu/beaglesnes/init.sh

uenvemd=run boot_ftd; run mmecargs; bootz 0x80200000 — 0x815f0000

Figure 6.2: BeagleSNES’s BBB HDMI uEnv. txt bootloader configuration file.

rate of 800 MHz. Originally, mpurate was set to "auto" and the "ondemand" governor was used
by the kernel. The high CPU utilization of the emulator would force the governor to adjust the
clock speed from 600 MHz to 800 MHz once the BeagleSNES application began executing in
user space. This caused the system to boot more slowly (since the CPU clock was at 600 MHz
for the entire kernel bootstrap process), so the mpurate and governor were changed accordingly.

While this CPU can theoretically be clocked at 1GHz, there are a few problems with doing
so. The BeagleSNES kernel source lacks a patchset that existed in earlier kernel versions (2.6.36,
3.0) that handle the VDD1 voltage adjustment of the CPU. It is non-trivial to port this patch set
to newer kernels. While the clock speed could be forced to 1GHz without this patch set, you
will slowly fry your BB-xM’s CPU while doing so. The system also becomes a bit unstable
when you’re pushing the CPU at 100% at 1GHz, which leads to application crashes (including
BeagleSNES). Therefore, the governor will only push the clock speed to a stable 800 MHz.

An interesting note: Titles that use Super FX® chips, such as "Star Fox", run really well when
the system is clocked to 1GHz (5 FPS at 800 MHz versus 20-25 FPS at 1 GHz). The extra clock
speed does make a big difference.

BeagleBone Black Kernel

When the BBB was first released in April 2013, the 3.8 Linux kernel was the OS kernel for the
board. The BBB’s kernel branch consisted of the mainline 3.8 kernel source tree with hundreds
of patches applied to it to support the BBB’s functionality. While the BBB’s hardware is largely
based upon that of its predecessor, the BeagleBone, the BBB’s 3.8 kernel is quite different from
the mature 3.2 kernel used by the BeagleBone. Thus, the change from 3.2 to 3.8 for BBB led to
new kernel features and new problems.

The main advantage of using the new 3.8 kernel was the introduction of the Device Tree’
data structure. This data structure allows for a more-uniform way of defining processor pin
multiplexing ("muxing"), identifying which kernel resources and drivers are associated with

8For more information on Super FX, refer to the Wikipedia article:
http://en.wikipedia.org/wiki/Super_fx
9Learn more about the Device Tree at http://www.devicetree.org/Main_Page.

— O 0 00 1O\ WU K~ W —

—_ =

12
13

14
15

6.5

6.5 Other Improvements to Boot Speed 33

kernel_file=3.8.13 —bone20.zImage
console=ttyO00,115200n8
mmecroot=/dev/mmcblkOp2 ro
mmcrootfstype=ext4 rootwait fixrtc

loadkernel=load mmc ${mmcdev }:${mmcpart} 0x80200000 ${kernel_file}
loadfdt=load mmc ${mmcdev}:${mmcpart} 0x815f0000 /dtbs/${fdtfile}
boot_ftd=run loadkernel; run loadfdt

This is for a slower boot, development setup

#mmcargs=setenv bootargs acpi=noirq capemgr.disable_partno=BB-BONELT-HDMI, BB
—BONELT-HDMIN console=blank vt.global_cursor_default=0 mpurate=1000
console=${console} root=${mmcroot} rootfstype=${mmcrootfstype}

This is for a quick boot, non—development setup

mmecargs=setenv bootargs acpi=noirq capemgr.disable_partno=BB-BONELT-HDMI, BB—
BONELT-HDMIN console=blank vt.global_cursor_default=0 mpurate=1000
console=${console} root=${mmcroot} rootfstype=${mmcrootfstype} init=/home
/ubuntu/beaglesnes/init.sh

uenvemd=run boot_ftd; run mmcargs; bootz 0x80200000 — 0x815f0000

Figure 6.3: BeagleSNES’s BBB LCD3uEnv. txt bootloader configuration file.

particular processor pins. Unfortunately, the 3.8 kernel is a combination of different kernel
subsystems and can be a bit tempermental at times. BeagleSNES will be moving to the 3.12/3.13
kernel tree once more testing has been completed and BeagleSNES is properly adapted to use it.
Other than the newer features of the 3.8 kernel, the BBB’s kernel is quite similar in nature to that
of the BBxM: the "performance" CPU governor is used and the kernel has been trimmed down
to reduce the kernel size, eliminate unneeded device drivers, and shorten kernel boot time.

Other Improvements to Boot Speed

Other system customizations that contributed to a faster boot time are:
e Shrinking the size of the root file system partition from 7.5 gigabytes to about 3.5 gigabytes.
This reduces the file system mount time at system start up.
e Shutting off unneeded daemons. By default, the Ubuntu Linux image that BeagleSNES
is based on started standard daemons like the print spooler, Apache web server, lvm,
dns-clean, fetchmail, etc.. These daemons slow down system start up and use the CPU for
no purpose.

e Reducing the number of tty terminals. There is no need for a dozen terminals on an

embedded device, and it takes time and resources to start and maintain them all.

For further performance improvements, the place to begin is the removal of even more
daemons. The next place would be to remove unneeded files from the root file system, convert
chunks of the remaining file system into read-only cramfs files, and then mount them to form a
mostly read-only file system. This will greatly reduce the portion of the file system that actually
needs to be read-write (such as /dev, /sys, /tmp, etc.). Moving to a lightweight shell, such as
busybox !, would allow for even more files to be removed.

The BeagleSNES menu and emulator are currently built in-place on the BB-xM and BBB
platforms, so a complete toolchain and debugger are installed inside of the current BeagleSNES
image for convenience. These tools could also be removed to reduce the size of the system even
further. The 1 gigabyte swap file could also be removed, saving a great deal of space.

Ohttp://www.busybox.net/

Overview

Audio Subsystem

Video Subsystem
Video During Boot
Game Selection Menu
Emulator Execution

% beagle

www.beaglesnes.org

7 — BeagleSNES Subsystems

Overview

g:

w

BeagleSNES uses the Simple DirectMedia Layer (SDL)! library to provide audio, video,
and input event functionality for both the game selection menu and the emulator. SDL is a
cross-platform library which has a simple programming interface that abstracts away many of
the details involved when creating multimedia applications. The BeagleSNES emulator is based
on an SDL port of SNES9X?. The mainline version of SNES9X only supports an X11 video
display target, which is unsuitable for the framebuffer video of BeagleSNES. By using the SDL
port, BeagleSNES is able to support a variety of interfaces, including those offered by the the
BB-xM platform.

This section is currently BB-xM only. It must be rewritten to include BBB
information. The overall concepts are still the same, though.

While the game selection menu and the emulator are really two separate applications (after
all, the only purpose of the game selection menu is to provide the emulator with the filename
of the ROM to be loaded), both exist in the same binary. Early testing showed that there was a
visible screen flicker and a delay of several seconds when transitioning from one to the other
when each was broken out as a separate binary. Therefore, the game selection menu will initialize
all of the needed SDL subsystems (audio, video, and joystick), execute, and then shut down the
audio and joystick subsystems prior to transitioning to the emulator. The emulator will then
reinitialize the audio and joystick subsystems while leaving the video subsystem alone®. By not
shutting down the video subsystem and reinitializing it, the visible screen flicker is removed.

"http://www.1libsdl.org

2The original SNES9X-SDL source, prior to the BeagleSNES modifications, can be fetched from the Git repository
at: https://github. com/domaemon/snes9x-sdl

3SDL allows an application to change the video resolution on-the-fly without reinitializing the video subsystem.
When the game selection menu and the emulator used to use different screen resolutions, the emulator had to change
the resolution when it began executing. But, it did not need to restart the video subsystem to do so.

7.2

7.3

36 BeagleSNES Subsystems

Audio Subsystem

The BeagleSNES audio subsystem uses the ALSA* interface that is exposed by kernel. The
interface is provided by the system-on-chip (SoC) audio driver for boards that have TWL4030
audio CODEC hardware’. SDL offers an ALSA back-end, so many of the details involved in
interfacing with ALSA are abstracted away from BeagleSNES by SDL.

The game selection menu uses a helper library, SDL_mixer®, to provide an even simpler
interface to SDL’s audio subsystem. SDL_mixer allows BeagleSNES to easily fade music in
and out, load audio in a variety of formats, and mix several channels of audio together. SDL
only provides a standard interface for pushing audio data out to the audio driver back-end, so the
more advanced functionality of SDL_mixer provides the additional features needed to create a
full-featured audio solution.

BeagleSNES configures the audio hardware of the BB-xM to use signed 16-bit stereo audio
samples with a sampling rate of 32000 Hz. Both the game selection menu and the emulator use
these same audio settings for simplicity. The audio subsystem is initialized in the game selection
menu so that audio feedback and background music’ can be played while the end-user examines
the list of games that are available for play.

When a game is launched from the menu, any playing audio fades out and the audio
subsystem is shut down. The emulator then reinitializes the audio subsystem using its original
program logic. The emulator’s implementation of the SNES’s audio DSP performs all of the
audio mixing, so SDL_mixer is no longer needed. While the real SNES hardware will play audio
at almost the same time that its DSP generates the audio data, the BeagleSNES emulator has
audio latency of approximately 100 ms. This is caused by the time needed to place the generated
DSP audio into the kernel’s circular audio buffer and the time needed before the pre-existing
audio data ahead of the new data in the buffer is consumed. In practice, this delay is hardly ever
noticed. This latency can be reduced by shrinking the size of the kernel audio buffer (12000
bytes), but this increases the amount of CPU resources dedicated to refilling the buffer and risks
the possibility of an audio buffer underrun.

Video Subsystem

BeagleSNES system’s video output is displayed via the BB-xM’s DVI digital output. The initial
release of BeagleSNES used the S-Video analog output for NTSC video output, but this ended
up being a poor choice for the following reasons:

e The analog video signal is very noisy. The horizontal sync varies from scanline to scanline,
there is a lot of static, and the color quality is poor. Whether this is due to poor drivers or
poor hardware quality is unknown.

e The 720x482 NTSC resolution is larger than what is needed for BeagleSNES. This means
that more pixels are being updated than are actually needed, which degrades performance.

e During development, profiling of BeagleSNES showed that displaying the framebuffer
was much slower for the analog output than it was for the digital output.

e The NTSC analog output has a refresh rate of 29.97 Hz, while the DVI digital output has a
refresh rate of 60 Hz. This means that the digital output can potentially display at a rate of
60 FPS, while the analog signal artificially limits the frame rate to half that amount.

e NTSC signals suffer from overscan.

4The Advanced Linux Sound Architecture. Read more about it at: http://www.alsa-project.org

5This audio driver is located in the file sound/soc/omap/omap-tw14030. c in the kernel source tree.

*http://wuw.libsdl.org/projects/SDL_mixer

7The background music that is played behind the menu comes from the group ViRiLiTY. It was originally
the tracked background music of an illicit serial number generator used for the piracy of the "ALO Power Audio
Converter" software.

7.3 Video Subsystem 37

All components of BeagleSNES render their graphics to the framebuffer console, which is set
to a native resolution of 640x480 and a color depth of 16 BPP. These particular settings are
hard-coded into the "omapfb" framebuffer driver® within BeagleSNES’s Linux kernel. The
refresh rate of 60 Hz means that whatever data is present in the framebuffer is pushed out as
a single frame of video and is displayed for roughly 0.0167 seconds. At the end of that time
period, the data in the framebuffer will then be pushed out as the next single frame of video.

The emulator runs at a logical 60 FPS internally, but this does not necessarily mean that it
will render video at 60 FPS. The emulator can potentially skip the rendering of many frames of
video if it falls behind schedule and needs to make up the difference. The skipped frames will not
even be noticed in many cases, though performance-intensive titles that require a large amount
of CPU time to emulate the SNES hardware will not have enough CPU time left to perform the
rendering of enough frames each second to make the gameplay "smooth".

Video During Boot

One of the defining characteristics of a consumer-oriented embedded device is that it "turns on"
immediately after it is powered up. The device must give the consumer some indication that
it is now going through its start-up process. Displaying some sort of graphical splash screen
immediately after power up is an excellent way to achieve this. Unfortunately, BeagleSNES does
not provide such a splash screen. Or, at least, it does not do so immediately upon powering up.
To do so would require adding functionality to the BeagleSNES bootloader to display the splash
screen’.

Roughly five seconds after power up, a much simpler method to display a splash screen
becomes available. At that point in time, the bootloader has loaded, decompressed, and begun
bootstrapping the kernel. The kernel initializes the graphical framebuffer and displays the first
graphical output of the system: an 80x80 pixel, 224 color image of Tux the Penguin. This icon is
displayed in the upper left corner of the framebuffer console. BeagleSNES turns this image into
a splash screen by replacing the original image'® with a much larger image: a 640x480 pixel,
224 color image of the BeagleSNES logo.

www.beaglesnes.org

Figure 7.1: The original BeagleSNES’s splash screen (left) was the smallest size it could be
(640x300) for NTSC (720x482), but the current one (right) is the same size as the screen
resolution (640x480) for simplicity.

Even though BeagleSNES uses a full-screen splash image, it is not really necessary for the

8This framebuffer video driver is located in the file drivers/video/omap/omapfb_main. c in the kernel source
tree.

9There actually is preliminary support for a splash screen in the bootloader, but it has not been "hooked up" yet
and needs further testing.

10This image is located at drivers/video/logo/logo_linux_clut224.ppm in the kernel source tree.

7.3.2

7.3.3

38 BeagleSNES Subsystems

splash screen to be the full resolution of the screen. The background color of the framebuffer is
black, and the image is displayed in the upper left corner of the screen, so it is only necessary to
include the bare minimum amount of splash screen image needed to center the BeagleSNES logo
on the screen. The splash screen is compiled into the kernel, so a smaller image reduces both the
size of the kernel and the time it takes for the bootloader to load the kernel into memory from
the microSD card. Adding a splash screen in this fashion increases the compressed kernel’s size
by only about 20kb. Normally, debug and information messages are printed to the framebuffer
console as the kernel boots, but BeagleSNES suppresses the printing of these messages'! so that
they do not overwrite the splash screen image.

The splash screen remains on the screen while the kernel continues to bootstrap. Once it
is finished, the splash screen disappears as the "icon" in the upper left corner is removed. The
screen remains blank until the game selection menu appears approximately 17-18 seconds after
power-up.

Game Selection Menu

The BeagleSNES game selection menu uses the entire 640x480 screen. The video subsystem of
SDL is used to request an SDL video surface to render to. This surface is not requested using the
SDL_FULLSCREEN flag, even though the resolution we want to use is the entirety of the screen.
Profiling the use of SDL_FULLSCREEN has shown that it is much slower than not using it, so it
is always better for BeagleSNES to use a "windowed" mode for all of its framebuffer graphics.
For the simple animations of the menu, though, the impact of slower execution is minimal.

When BeagleSNES used analog video, not all of the space on the screen was usable. Due to
NTSC overscan, some portion of the edges of the screen may be "cut off" by the television that
the image is being displayed on. The amount that is cut off varies depending upon the particular
television, so it is important to design the interface so that there is a "safety buffer" around the
edges of the screen where text and other important items must not be placed. Typically, no more
than a few pixels are cut off on each edge, though the left edge of the screen loses far more: a cut
off of 12-16 pixels is common. Digital video does not have this issue.

f beagle ,} beagle
Game List Game List

Donkey Kong Country | & Donkey Kong Country o &
F-Zero F-Zero

= BE

R-Type Il if g~ R-Type Il i./'

Star Fox Star Fox -
. This futuristic racing game was originally . This futuristic racing game was originally
Super Mario All-Stars an SNES launch title, and it shows off the Super Mario All-Stars an SNES launch title, and it shows off the
impressive Mode 7 graphics of the impressive Mode 7 graphics of the
platform. Race towards the finish using == platform. Race towards the finish using

turbo boosts, jump plates, and more! turbo boosts, jump plates, and mere!

elect game
RELEASEDATE: 1991 RELEASEDATE: 1991
GENRE: Sport/Racing eSS 0 oltar GENRE: Sport/Racing

Figure 7.2: A screenshot of the old game selection menu (left), and the same menu with the
potential NTSC overscan regions marked in red (right).

Emulator Execution

NOTE: This section contains information about the video of the emulator from when BeagleSNES
used analog video output. It remains in the documentation because it may be of some technical
interest to other BeagleBoard developers.

These messages can still be viewed via the serial debug interface (/dev/tty02), though.

74

7.4 Input Subsystem 39

<Analog video material begins here>

Once a selection has been made via the game selection menu, the screen fades to black
prior to starting the emulator. This was not a choice based upon aesthetics (well, not directly,
anyway). Internally, the emulator requests a 616x478x16 SDL video surface to render to. This
resolution is different than what was previously set, so the SDL video subsystem actually has to
be reconfigured with the new resolution. If the framebuffer is completely black, the transition
between resolutions is never noticed by the end user. It also ensures that portions of the screen
that are never updated by the emulator’s rendering remain black during its execution.

The odd 616x478 resolution of the emulator was determined by the following method.
Internally, each rendered scanline of SNES graphics is 512 pixels long. If we subtract the 512
pixels from the 720 pixel screen width, we have 208 pixels left in each scanline of the screen
framebuffer (the screen framebuffer has a pitch of 1440 bytes, or (720 pixels * 2 bytes), so there
are no extra offscreen pixels). If we divide these 208 pixels in half (since half will fall to the
left of our SNES data and half will fall to the right of it), we have 104 pixels. 512 pixels + 104
pixels = 616 pixels, which is the resolution we request. Since we are not requesting a full-screen
SDL video mode (via the SDL._FULLSCREEN flag when calling SDL_SetVideoMode()), the
SDL surface will render into the left-most 616 pixels of the screen. With the offset of 104
pixels, the 512 pixels of the SNES scanline will render in the center of the screen. The emulator
renders at a vertical resolution of 478 pixels. It is actually rendering each of the SNES’s internal
239 scanlines twice to pixel double up to 478 scanlines. The SDL surface will render into the
top-most 478 pixels of the screen, leaving the bottom 4 scanlines of the framebuffer untouched.
Some, if not all, of these 4 scanlines will never even be seen, since they are usually lost to
overscan.

<Analog video material ends here>

Finally, by using an SDL._UpdateRect() call to only update the portion of the framebuffer
containing the 512x478 portion of SNES image data, we leave the chunks of black in the
framebuffer that are to the left and right of the SNES graphics untouched. Why go to all
of this trouble? Speed. There is a considerable difference between the speed of using the
SDL_FULLSCREEN mode (slow) and using only a portion of the screen (much faster). Titles
that would run at close to 30 FPS would drop to 8-12 FPS when running in a full screen mode.

Input Subsystem

BeagleSNES uses USB gamepad events as its only method for receiving input from the end
user. Both SDL and the Linux kernel view these gamepads as a USB human interface device
(HID) class joystick devices. SDL’s input event mechanism for gamepads is split over two
subsystems: video and joystick. The video subsystem captures most events that are experienced
by SDL-based applications: keyboard, mouse, window manager, etc.. Once the video subsystem
is initialized, SDL’s internal event queue is initialized as well. Joystick events (the type of event
that would be received from a gamepad) are an optional addition to the SDL event mechanism.
They are not received by the general SDL event handling code until the joystick subsystem is
initialized. Once that initialization occurs, gamepad events are also generated and placed into
SDL’s event queue alongside the other types of events.

When the joystick subsystem is initialized, the underlying limitations of the Linux kernel’s
joystick interface become apparent. The number of connected joysticks is reported, and any
reported joysticks can then be "opened" to begin receiving events from them. Unfortunately,
there are many things that could go wrong:

e If the USB hardware is unreliable (connections to devices are lost, but then quickly

restored), SDL will stop responding to it. This is because the "old" joystick is gone, but a
"new" one has taken its place, and the new joystick must then be opened to use it.

40 BeagleSNES Subsystems

e Joystick devices vary in the number of axis and buttons that the device provides to the
software. If an end-user plugs in a USB joystick device that reports a different number of
buttons or axes, or reports buttons that are mapped in a different order than expected, then
the behavior of the device will not be correct.

e There are no "new joystick plugged in" or "joystick unplugged" events generated by SDL.
There is only a mechanism to query how many joystick devices are currently plugged into
the system.

BeagleSNES does its best to work around these limitations. There is a known problem that
the BB-xM has with briefly losing power to its USB devices. This problem has the same effect
as rapidly unplugging and then plugging in a gamepad: the gamepad appears to stop working
because the joystick driver device file in the file system that SDL listens to for joystick events
becomes invalid. BeagleSNES addresses this problem with a kernel patch!? that properly handles
this issue.

Originally, BeagleSNES required that all gamepads must be plugged in prior to power up
and not removed during system operation. This situation is far from ideal, since gamepads
can accidentally become unplugged during use. The current approach to this problem is to
tie the internal representation of a particular gamepad to the physical USB port on the system
that the gamepad is plugged into. Two of the BB-xM USB ports are designated explicitly for
BeagleSNES gamepad use: one being the port for "player one" gamepad and the other for "player
two". Unless a gamepad is plugged into either of those particular ports (i.e. the "player one" or
"player two" port), it will be completely ignored.

When a USB gamepad is plugged into the BB-xM, new files are dynamically created in
the /sys and /dev directories of the root file system, thanks to the sysfs support in the
kernel'3. Plugging a USB gamepad into the "player one" port creates a file'4, as does plugging
a USB gamepad into the "player two" port!3. Each of these files is a symbolic link to one
of the /dev/input/jsX joystick device files. These device files are opened from user space
applications to access joystick events. By watching the creation and destruction of these files
via a stat () or readlink() function call, BeagleSNES can determine whether a gamepad is
present or not in those particular physical USB ports.

The /dev/input/jsX device files enumerate the various joystick devices that are connected
to the system, in the order that they are connected, using the device files jsO, then jsi, etc.
BeagleSNES will dynamically remap joystick events so that the events are attributed to the
correct gamepad. On each pass through the event handler loop, the "player one" and "player
two" sysfs files are examined to see if they exist. If either has changed, the joystick subsystem
of SDL is shut down and restarted to reconfigure the gamepads accordingly. This expensive
operation only occurs if a controller has been plugged in or unplugged. Otherwise, the only
overhead created is by the two checks to see if the sysfs files exist and a table lookup to remap
joystick events to the correct gamepad as those events occur.

12This patch is for 3.2+ kernels. Older kernels still suffer from this issue.

Bsysfs is a virtual file system that is accessible from user space. It exports information about devices that
are registered with the kernel, as well as a variety of driver information. By reading these files from user space
applications, the devices that these files represent can be interacted with easily.

14/dev/input/by-path/platform-ehci-omap.0-usb-0:2.2:1.0-joystick

15/dev/input/by-path/platform-ehci-omap.0-usb-0:2.4:1.0-joystick

Overview

Video

Audio

GPIO Input

Other Considerations

% beagle

www.beaglesnes.org

8 — Making BeagleSNES Portable

Overview

With the small physical size and flexibility of the BeagleBone family of boards, it is natural to
consider using BeagleSNES as the software to drive a portable video game system. To this end,
some research has gone into developing such a system and has resulted in the new LCD3 cape
display target for BeagleSNES. A prototype portable unit is shown in Figure 8.1.

rowen
sreco 400 kst

Figure 8.1: A prototype of a portable BeagleSNES system. This prototype still requires a USB
gamepad and power via the +5VDC barrel connector, so it isn’t fully "portable".

8.2

8.3

42 Making BeagleSNES Portable

This target varies from the existing BBB target in the following ways:

e The LCD3 cape has a resolution of 320x240. This requires a rework of the BeagleSNES
front-end GUI. On the bright side, such a small resolution allows the emulator to render
at the native 256x239 SNES resolution without requiring the use of a software-based
pixel-doubler to scale the SNES video output to the higher-resolutions used by the BBB
and BB-xM.

e Additional audio hardware is needed. For the BBB HDMI target, a dummy CODEC in
the kernel provides an ALSA interface to userspace. Audio data written to the dummy
CODEC is passed to the HDMI framer chip in I2S format. The framer then packages up
the audio data and sends it to the display via the HDMI protocol. When not using the
HDMI framer chip, a different audio device must be provided.

Video

The LCD3 cape, seen in Figure 8.2, provides the video display functionality for a portable
target. It weighs approximately 70 grams and has a current consumption of 100mA. While it is
possible to use a smaller display, or at least a display module that has a smaller footprint, the easy
availability and pre-packaged nature of the LCD3 cape makes it appealing for quick prototyping
without having to worry about device drivers.

= A1
©a
i

6 6e

L)
T e

©6 06 66 o

=T B
TR

Roocc

2312L.CD30002

BeagicBone Lopy Cape g

e
b 0O OO

°

Figure 8.2: The LCD3 cape board made by CircuitCo. This 320x240 LCD has a touchscreen and
five input buttons (left), and it plugs into the BBB’s P8/P9 connectors via pins on the underside
of the cape board (right). Photo credit: http://elinux.org/CircuitCo:BeagleBone_LCD3

Because the LCD3 cape is defined in the default Device Tree for the BeagleSNES kernel,
it will be automatically detected and configured when it is connected to the BBB. The LCD3
uses the TILCDC driver in the kernel to provide a 16 BPP data bus between the BBB and the
LCD3 cape. This is the same driver that is used to communicate with the built-in HDMI cape of
the BBB, so userspace software need not be aware of the differences between communicating
with the LCD3 cape versus communicating with the HDMI framer chip on the HDMI cape. As
long as the 320x240 resolution is configured as a valid framebuffer resolution (by adding the
appropriate framebuffer mode to the /etc/fb.modes file), BeagleSNES can simply request a
320x240 resolution and then adjust its rendering accordingly to use the LCD3 cape.

Audio

The simplest solution for adding audio hardware to the prototype is to use a USB sound device.
Such devices are inexpensive (usually around 5-10 USD), quite small (as seen in Figure 8.3),
and readily supported via the USB sound device driver in the kernel. The configuration to enable
this audio driver in the kernel is seen in Figure 8.4.

8.3 Audio 43

Figure 8.3: A USB audio device with its casing removed.

Device Drivers --->
<*> Sound card support --->
<*> Advanced Linux Sound Architecture --->
[*] USB sound devices --->

[*] USB Audio/MIDI driver

Figure 8.4: The hierarchy within the 3.8 Linux kernel kconfig configuration utility for enabling
the USB audio device driver. BeagleSNES now enables this driver in its BBB kernel for both
HDMI and LCD3 video output.

The BBB only has a single USB port available. Plugging the USB audio device into it is
convenient from an implementation standpoint, but it is inconvenient because the device will
extended beyond the footprint of the BBB and LCD3 cape. Worse yet, a USB port is still needed
for the USB gamepad. To resolve these issues, a small, 4-port USB hub is plugged into the single
USB port and then used to provide USB to the gamepad and USB audio device. The hub, when
its casing was removed, is so small that it fits into the space between the LCD3 cape and BBB
when the cape is plugged into the BBB.

Figure 8.5 shows the positioning of the USB hub and the USB audio device when both
components are positioned on top of the BBB. The USB audio device is soldered directly to one
port of the USB hub, allowing the audio jacks to be positioned in a convenient location that isn’t
limited by the physical position of the USB ports on the hub. Both the hub and audio device are
wrapped in electrical tape to avoid shorting and inadvertent electrical connections. Because the
LCD3 cape only uses a portion of the pins on the P8 connector, the audio jacks are positioned on
the connector, next to the ethernet jack. The assembled unit with all components is shown in
Figure 8.6.

8.4

44 Making BeagleSNES Portable

Figure 8.5: The USB hub and audio device. The audio device is soldered directly to a USB port
on the hub (left). Both the hub and device are wrapped in electrical tape and positioned on the
BBB.

Figure 8.6: The assembled prototype. The edge of the unit with the power connector (left)
exposes the audio jacks and the FTDI debug cable. The edge of the unit with the BBB USB port
(right) exposes the edge of the USB hub and the USB port exposed by the hub. The slight “tilt”
of the LCD3 cape is due to the height of the FTDI debug cable preventing one side of the cape
from being completely inserted.

The CircuitCo Audio Cape requires the use of GPIO3[19], which is also used
by the LCD3 cape. So, as the moment, there is no way of using the two
together. A copy of the device tree overlay for the audio cape has been added to
/lib/firmware so that you can experiment with the audio cape, but it won’t
just “plug-and-play” like most capes will. You will have to manually load the
overlay for the audio cape to use it.

GPIO Input

While requiring the user to use a USB gamepad for input is convenient for the developer, it isn’t
convenient for the user. A proper implementation of a portable unit would use GPIO buttons for
input and eliminate the need for the USB hub completely. Luckily, BeagleSNES supports GPIO
input. This allows for a more elegant design for a portable platform, since a custom controller
can now be built around the LCD and BBB to minimize the unit’s size and weight.

By default, the GPIO support for BeagleSNES on the BBB uses all of the 13 pins on P8.7
through P8.19. These pins are configured as input pins, and the games . xml file maps these pins
to SNES controller events (see Section 3.3.5). In addition, pin P8.2 is used as a ground, and pin
P9.3 is used to provide 3.3V. When 3.3V is applied to a GPIO pin, a key down event is placed
into the internal application event queue. When the GPIO pin goes to ground, a key up event is
triggered in the same fashion. Figure 8.7 shows an example implementation of GPIO input for

8.5

8.5 Other Considerations 45

BeagleSNES. Each pin has a 10k ohm resistor in a pull-down configuration.

BeagleBone

Figure 8.7: Input via GPIO. Thirteen pins are in use in the contiguous block from P8.7 through
P8.19. Each pin uses a pull-down resistor configuration. These pins implement the directional
pad (4), A/B/X/Y/L/R buttons (6), start/select buttons (2), and a pause button.

While most of these pins can be easily accessed while the LCD3 cape is attached, pin
P9.3 is used to supply power to the LCD3. To connect to this pin, either put an intermediary
“prototyping” cape in place that will give you access to the pin or snap a connector onto the P9.3
pin of the LCD3 cape to make a connection. The prototype in Figure 8.7 used a logic analyzer
probe connector to grab onto the P9.3 pin of the LCD3 cape.

Always be very, very careful when working with pins on the BBB that supply
voltage. While pins P9.3 and P9.4 supply 3.3V, pins P9.5 and P9.6 supply 5V.
Connecting a 5V line to a GPIO is a sure-fire way to ruin your BBB, so always
exercise caution!

Other Considerations

While the prototype is a good start, there is still work to be done in making a true "portable"
system:

e Power is a consideration. How much battery life will you get if the emulator is maxing
out the CPU? You’ll still need a 5VDC, 2A power supply to power the board with the
AM3359 running at maximum capacity. How heavy will this battery be? The design of
the (now discontinued) CircuitCo battery cape! might be a good reference point to start
designing from.

Ultimately, it will come down to how fancy you wish to make your portable unit design and how
much money you’d like to spend prototyping it. The sky is the limit!

Ihttp://elinux.org/CircuitCo:BeagleBone_Battery

General Acknowledgements

% beagle

www.beaglesnes.org

9 — Acknowledgements

General Acknowledgements

While a project as complex as BeagleSNES can be organized and put together by one person, such
an effort is only made possible by leveraging the hard work that others have already done. The
following people have all contributed to the pieces that make up the foundation that BeagleSNES
is built upon:

e The team at beagleboard.org, who have developed the BeagleBoard family of hardware
platforms. Their efforts over the past several years have led to a variety of affordable,
open-source hardware that is helping to encourage education and experience in embedded
systems.

e Canonical (http://www.canonical.com), for their work on Ubuntu, which forms the
base OS and file system environment of BeagleSNES.

e Robert C. Nelson (http://www.rcn-ee. com), whose kernel work has formed the basis
of BeagleSNES’s kernel. His wonderful Git repository of BeagleBoard kernel patches, as
well as his numerous postings on various mailing lists and message boards, has provided a
wealth of knowledge regarding the BB-xM platform.

e The SDL library team (http://www.libsdl.org), for their on-going work in providing
a straight-forward interface to the low-level multimedia systems of both desktop and
embedded platforms.

e The SNES9X team (http://www.snes9x.com), for their excellent, cross-platform SNES
emulator.

e Yann Morin, for crosstool-NG (http://crosstool-ng.org), the cross-compiler toolchain-
building scripts that have made the process of building a cross-compiler for BeagleSNES’s
development a snap.

e Petr Stetiar, for his beagleboard-uboot-logo project (https://github.com/ynezz)
that served as a starting place for the bootloader splash screen code in BeagleSNES.

There is more to BeagleSNES than just code. The following people have also provided assistance
and support during the development of the project:

e Dave Vedder at changeMode design (http://www.chmoddesign.com), who developed
the layout and look of the game selection menu. If you need a GUI designed, I highly
recommend him.

e Internet Janitor and Suspicious Dish of the Something Awful forums, who have provided

48

Acknowledgements

useful feedback pertaining to the game selection menu’s fonts and animations.

Mathias Legrand, creator of the Legrand Orange Book LaTeX template! that this document
was created with.

Elijah Hall (http://mrkittie.newgrounds.com),

... Genraltweet (http://genraltweet .newgrounds.com),

... conorstrejcek (http://conorstrejcek.newgrounds.com),

.. and MarioMan94 (http://marioman94.newgrounds.com), the creators of several
pieces of music that have served as the background audio for the BeagleSNES release
video trailers.

Robert Beagley, who has lent his surname to the cause and who has also greatly enlightened
the world at large with his many philosophical musings on bacon.

GameFAQS (http://www.gamefaqgs. com), for their extensive collection of SNES game
box images.

The EECS department at Syracuse University (http://www.syr.edu), who gave guid-
ance and support to the BeagleSNES project during its initial development as a graduate
course project.

Finally, a big thank you to Nintendo®)for developing the SNES hardware platform. Over 700+
game titles were released for the SNES?, and it would be a shame if this fantastic platform faded

away.

"http://www.latextemplates.com/template/the-legrand-orange-book

"http://en.wikipedia.org/wiki/List_of_Super_Nintendo_Entertainment_System_games

Changelog

% beagle

www.beaglesnes.org

10 — Project Changelog

Changelog

Version 0.6 Release - 03 July 2014
General:
e Updated the documentation.
Application:
e Added GPIO input support (BBB targets).
e Added a splash screen to keep the user distracted while a background thread loads the
GUI assets.
e Added support for the pause menu with snapshot load/save.
e Added gamepad and GPIO configuration support to the XML-based games . xm1 file.
e Cleaned up the emulator shutdown code so that a game can be cleanly exited and control
will return to the front-end GUL
e Changed from sync()-ing the filesystem to fsync()-ing specific files when saving snapshots,
screenshots, saved games, etc.
e Fixed hi-res blitters that were smashing the stack on some games (Donkey Kong Country,
Secret of Mana, Seiken Densetsu 3).
Added a shrinking blitter to make the hi-res blitters work with a 320x240 display.
Reenabled support for loading compressed ROMs (.zip, .gz).
Added Expat libraries into the configure script.
Cleaned up the XML parser a bit more to eliminate closing tag errors where there weren’t
actually errors.
e Added more aggressive optimization flags to the compile options to squeeze out a few
more FPS.
File System:
e Added entries for eth1 to /etc/network/interfaces for users having difficulty getting
the BBB ethernet to initialize and pick up an IP via DHCP.
e Placed a device tree overlay for the CircuitCo Audio Cape (RevB) (BB-BONE-AUDI-02)
in /lib/firmware in case anyone wants to try using it with the BBB.
Version 0.5 Release - 18 February 2014
General:
e Updated the documentation.

50 Project Changelog

Application:
e Changed the old game selection menu configuration file from games.cfg to the new
XML-based games.xml format.
e Added support for the 320x240 LCD3 display.
e Added software volume control (mostly used by the LCD3 target).
e Changed the name of the snes9x-sdl.BBB binary to snes9x-sd1l.BBB.HDMI (for the
BBB HDMI target).
e Added the snes9x-sd1.BBB.LCD3 binary (for the BBB LCD3 target).
e Changed the game selection GUI to pull its button mappings from the emulator configura-
tion file.
e Moved the configuration, ROM, and image files to the /boot partition.
Kernel:
e Added controller driver support for ACRUX, DragonRise, GreenAsia/Pantherlord, I-Force,
Sony PS3, X-Box, and ZeroPlus.
Bootloader:
e Updated the U-Boot bootloader for all targets to v2014.01.
e Modified the setup_BBB. sh script so that it is now two scripts: setup_BBB_HDMI.sh
(for the BBB HDMI target) and setup_BBB_LCD3. sh (for the BBB LCD3 target).
e Setup the kernel command line arguments in the setup_BBB_LCD3. sh script to disable
the HDMI cape.
File System:
e Increased the /boot partition size from 64 megabytes to ~950 megabytes.
e Decreased the /rootfs partition size to fill the remainder of the 4 gigabyte microSD card
image.
e Changed the service.sh script to detect whether the LCD3 cape is attached for BBB
systems.
e Modified the /etc/modes. b file to include a 320x240 mode for the new LCD3 display
target.
e Added the Expat 2.1.0 library and headers to /usr/local.
Version 0.4 Release - 07 June 2013
General:
e Reduced boot time from 20 seconds down to about 10-12 seconds in "fast boot" mode.
e Updated the documentation.
Application:
e Added support for two gamepads via an external USB hub (BBB).
e Added support for an arbitrary number of games to be listed in the game selection menu.
e Removed the user space workaround that adds USB hotplugging (BBB).
Kernel:
e Updated the kernel tree from 3.8.11 to 3.8.13 (BBB).
e Patched the kernel to fix issues with USB hotplugging and "babble interrupts" (BBB).
Bootloader:
e Added the kernel command line init= option in uEnv.txt to use init.sh as the init
process of the system for "fast boot" mode.
File System:
e Added the init.sh script to act as the new init process of the system.
e Modified init.sh to mount various file systems, start the udevd daemon, and launch
BeagleSNES’s service. sh script.
Version 0.3 Release - 17 May 2013
General:

10.1 Changelog 51

Added support for the BeagleBone Black platform.

Added setup_BBB.sh and setup_BBxM. sh scripts in the boot partition to switch the full
system image from BBB to BB-xM and back.

e Made BBB the default state of the full system image.

Updated the documentation.

Application:

e Modified the graphics to support 720x480 (BBB) and 640x480 (BB-xM) based upon
preprocessor defines.

e Added support the dynamic plugging/unplugging of gamepads for BBB.

e Fixed a timing bug where the selection GUI might freeze.

e Fixed a bug where SRAM (saved games) was not being written out to the microSD card.
Also added a sync() call on SRAM activity to ensure saved games are stored on the
microSD card.

e Modified the service.sh launch script to detect whether the system is BBB or BB-xM

and launch the appropriate binary.

Kernel:
e Added a new Linux kernel tree (3.8.11) to support the BBB. The BB-xM is still using the
3.7.10 kernel tree.
e Added a 720x480 kernel splash screen for the BBB port.
Bootloader:
e U-boot has been upgraded from v2013.01 to v2013.04.
e The beaglesnes_build.sh build script has been changed to have an additional configu-
ration target for the BBB.
File System:
e Both the BBxM and BBB kernels are in the /boot partition. BBB and BBxM subdirectories
were added to hold platform-specific bootloader and uEnv . txt files.
Version 0.2 Release - 23 April 2013
General:
e Changed from analog video (S-Video) to digital video (DVI).
e Decreased boot time from about 25 seconds down to about 20 seconds.
e Improved gamepad support.
e Added a kernel splash screen.
e Published the first version of this documentation!
Application:
e Changed resolution of game selection menu from 720x482 to 640x480.
Changed resolution of emulator from 616x478 to 640x480.
Added support the dynamic plugging/unplugging of gamepads.
Removed several checks for movie playback and saved states from main emulation loop.
Changed the internal emulator scaling algorithm from "Simple2x1" to "Smooth2x2" to
accommodate for the increased sharpness of the digital video signal.
e Moved the loading of background music and the rendering of dynamic text so that they
occur after the BeagleSNES logo and gradient bar are loaded and rendered to the screen.
This gets something up on the screen ASAP for the end-user.

Kernel:
e Removed video encoder (VENC) support (S-Video support removed).
e Added parallel display interface (DPI) support, generic DPI panel driver, and TFP410
DPI-to-DVI chip driver (DVI support added).
e Built SMCI9XXX network support directly into the kernel, rather than as a module. Now
no kernel modules are dynamically loaded.

52 Project Changelog

e Added a 640x480 splash screen displayed during kernel bootstrapping by replacing the
80x80 tux boot icon with the splash image.

e Removed a bunch of device driver modules from the build, since they weren’t actually
being used anymore.

Bootloader:

e Preliminary support for a bootloader splash screen was added (dss_init () in beagle.c).

e Changed mpurate from auto to 800 in uEnv. txt to force the kernel to set the clock to
800 MHz immediately, rather than wait for the governor to adjust it.

e Cleaned up a bad PLL4 clock register setting that was preventing logging in through the
debug serial output (beagle.c).

e Changed the video configuration in uEnv.txt to use digital 640x480@60 Hz (DVI)
instead of analog 720x482@30 Hz (NTSC).

File System:

e The service.sh launch script for the BeagleSNES application is now started via the
script /etc/rc.local, rather than as an "at reboot” cron job in crontab. This gets the
game selection menu up and available much quicker (prior to tty initilization).

e The loadcpufreq, cpufrequtils, and ondemand services were removed from all
/etc/rc?.d directories.

e The rootfs file system was shrunk down from 7.5 gigabytes to 3.5 gigabytes.

Initial Release - 15 March 2013
e Registered the beaglesnes.org domain name.
Created the BeagleSNES SourceForge project.
Created the project launch trailer video.
Cleaned up the files and made them available on the web.

